勾股定理趣事
学过几何的人都知道勾股定理。它是几何中一个比较重要的定理,应用十分广泛。迄今为止,关于勾股定理的证明方法已有400多种。其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话。
总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的。事情的经过是这样的:
在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正 在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地 谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?
只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
1881年,伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。